Halpern–Ishikawa type iterative method for approximating fixed points of non-self pseudocontractive mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Iterative Algorithm on Approximating Fixed Points of Pseudocontractive Mappings

Let E be a real reflexive Banach space with a uniformly Gâteaux differentiable norm. Let K be a nonempty bounded closed convex subset of E, and every nonempty closed convex bounded subset of K has the fixed point property for non-expansive self-mappings. Let f : K → K a contractive mapping and T : K → K be a uniformly continuous pseudocontractive mapping with F T / ∅. Let {λn} ⊂ 0, 1/2 be a seq...

متن کامل

Ishikawa Iteration with Errors for Approximating Fixed Points of Strictly Pseudocontractive Mappings of Browder-Petryshyn Type

Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a nonempty closed convex subset of E and T : K → K be a strictly pseudocontractive mapping in the sense of F. E. Browder and W. V. Petryshyn [1]. Let {un} be a bounded sequence in K and {αn}, {βn}, {γn} be real sequences in [0,1] satisfying some restrictions. Let {xn} be the bounded sequence in K generated from any given x1 ∈ K...

متن کامل

Convergence Theorems for Fixed Points of Demicontinuous Pseudocontractive Mappings

Let D be an open subset of a real uniformly smooth Banach space E. Suppose T : D̄ → E is a demicontinuous pseudocontractive mapping satisfying an appropriate condition, where D̄ denotes the closure ofD. Then, it is proved that (i) D̄ ⊆ (I + r(I −T)) for every r > 0; (ii) for a given y0 ∈ D, there exists a unique path t → yt ∈ D̄, t ∈ [0,1], satisfying yt := tT yt + (1− t)y0. Moreover, if F(T) = ∅ o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2018

ISSN: 1687-1812

DOI: 10.1186/s13663-018-0640-5